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Examples of Flexible Multibody Spacecraft in Large Overall Motion:
Configuration Change, Spin, Slewing, and Antenna “Extrusion”
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JPL’ s Galileo Spacecraft : A Flexible Multibody System

1. HG flexible antenna rotates

w.r.t. flexible stator

2.RTG booms swivel w.r.t. ovow
. e

HG antenna about rotary hinges

to provide wobble damping

3.Scan platform rotates
w.I.t. stator in 2 dof hinges \7{’5"'5 >

FILLDS AND
PARTICLES

SCINGE
JOOM (10,5 1) ==

Essence: a typical spacecraft is
made of several flexible bodies, =
connected by rotational joints,

with the bodies undergoing

large rotation with small Fig. | Galileo spacecraft built by the Jet Propulsion Labaratory
elastic vibration Studied Jupiter’ s Atmoshere
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Kane’ s Method of Deriving the Simplest Eqns of Motion by the Least
Labor: Example--50 DOF System of 4 Flex Bodies with Rotary Joints

Kane, T. R. and Levinson, D. A., “Formulation of Equations of Motion for
Complex Spacecraft,” Jour. of Guidance and Control, Mar-Apr 1980, pp. 99-112.

Simplifying motion variables u, = ZAjk g, +D,, =g, = ZW@ w,+ X, j=l..n

n k koo k
V= E i G+ A E Al I, +B Velocity is in terms of j-th Partial Velocities , ov*
g, i or Hou, which are functions of gen. coords, q’ s ou,
a’ = aLu i+ C" Acceleration of generic point k
= I .
J=1 7%

v’ _ Use of dot-products make
au. sl T doeeey

NP n avk avk .
kaz[ *—Juj=
< A oy, au].

M(@)}uf-{r}

For 50 dof system, form, decompose & solve 50x50 dense, time-varying matrix 4
times per RK step; Unmodified this approach is expensive !

0= f[Fk +(-m*a")]e

Kane' s Equations of least labor
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3-Step Recursion of Kane’ s Eqs for Block-diagonal Matrix Eqs*

Step 1) Form Klnemtlcs Eqns going Forward from Bodv 1 to Body n

"-/: M‘Th = _#J. __hh-q“x
C ,f ,r—f-\f,_f_ﬁ L c(j) f;;_,,__fﬁ_;
P A D T 3\\
ang. vel. j-frame = - - . o) __J -
W = Clj.j [0+ (P,)n‘U + Ccm.pmGjOJ]
inboard body ang vel, modal slope rates, gimbal rotation rates
velocity of Qj
vQ/ :Cc(/) /z QL(/)_{__w((/)lrQ (/)P,+(b((_/)(P )nc(J)J

~c(J)
+ ¢CDPIND + Cejy.pn L 7+ [V

+ ;-C(J.)(Pj )7.7('('/.)] C(‘(,/')./)(,J')L'/‘Tj}
inboard body hinge Pj-velocity, plus account for sliding joint

*Banerjee, A. K., ""Block-Diagonal Equations for Flexible Multibody Dynamics with
Geometric Stiffness and Constraints', JGCD, Nov. - Dec., 1993, pp. 1092-1100.
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Block-Diagonal Eqns (continued)

Step 2) Form Dynamical Eqns for Body n Going Backward to bodyl

Write Eqs. for Body j Vibration for Base Accl: invert nmodes X nmodes matrix

oF
o \a : f. .
E/n/ = A{ “,,} + Xy E = M'®’ Il

{ag"l _ [f}'%z + R ii“j CONG Ny
o &g 6/

Write Rotn / Tran Newton-Euler Eqs for body j hinge: invert matrix of size 1 to 6

~QJ J . g
gy I T M{{‘i".j} +YI |+ f,?> v =Rk
6/ & - t

Step 3)After eqns for body #1 are formed, go forward one more
time to explicitly “uncover’ eqns for bodies 2.....n one at a time
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Applications: Degenerate Case of Systems of Rigid Bodies

Two Antenna Booms, each 150 m long, for
Yawing Shuttle WISP experiment

Banerjee, A K &
Nagarajan, S., “Efficient
Simulation of Large Overall
Motion of Beams Undergoing
Large Deflection”, Multibody
System Dynamics, ' 97,
pp.113-126.

Shuttle Waves in Space Plasma (WISP) Experiment
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Elastic Beam Modeled as Many Rigid Rods Pin-Connected by
Rotational Springs, for Large Bending Simulation of 150 m Antenna

Torque Sm Rigd bars RActational springs

>
Antenna length =150 m

(a) Discrete model with rigid bars and rotational sprngs

8 EI Torsion spring stiffness values
M=y obtained by equating K*60
to bending moment in

o = 48n-12 EI ~ beam& discrete models

n-1 L

El
gj==—, 1=}...n " %, - g e

L 6, = ks anglo et/

By~ olason of e shtie YoM e eed relerence Yame

(0) Delormad model showing kink angles
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Rigid Body Order-n vs. Nonlinear FEM for Shuttle WISP Antenna:
Large Yaw Angle, Root Bending Moment, Tip Deflection, CPU sec

Shuttle yaws ~T1 revin 20 min Table L
L
-

n T Formulation  Number of clemenis  Stepsize (sec)  CPU time (e
Ya T .
(deW ) . > adl CPU ordern 10 10 3
5 0 -1 sec Omern 10 03 409
L +T fnite clement 10 10 90
010 100 15 M0 M0 X0 N A0 A0 M0 W M0 B0 M0 MOM0 B K0 0N 1000 10% 1100 1140 1) - - T
B O(n) Model 36 times faster than FEM
Bending: = e fﬁ
s AN yd \\
Moment - A .
2 5 S ———
= i | — SEE—
Time (seccecs)
Tip N Figure 6. Beam root bending moment. 10 element solution.
sz —
Defl - <
80m = =
20 ‘40 /ato B U
150 m : —V / frcte O Thaony, c':'o.s.-g
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Deployment & Retraction Problems : Variable-n O(n) Formulation

of two 150 m Booms from Yawing Shuttle [Banerjee, JGCD,1992]
Deployment (telescoping) Retraction (spaghetti-eating)

RACTION WITH PLANAR BASC ROTATiON

1 | |

Deflec T e Deflec H . I - AT
max 6t | maad ey
a) o0 IR RE e s e WO ) A N 1) §
COCECTIOK AT SO M FROM BEFM 717 ; QEFLECTION AT S0 M FROY BOAM T.f Retieval
T ] i | 'described

Deflec | 1 |

0m .. | T L by

from ;. 1] LI YU N N 7. 5/ "1‘,‘" | |varying
3 | i | , | number

P, o oy i N B T T of

12 min to JEPLDAED BEFR LENSTH l'igid rods
T deploy/ _ L ;in play
Boom  : T LD retrieve B S N Y A

Length i b~ 150m | e

|
34 J M.« bOOm bt 10.0 0.0 0.0 L Ne.0 H‘l
¢) TINC 1561

¢) I 15
WISP Boom Bending due to Coriolis Force
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Modeling Cable Deployment Dynamics in Towing of Underwater
Powered Device Connected by Cable to Ship

pinned links with

\\ / no joint stiffness:

e (/ Banerjee &Do,

Fig. 2 Discretization of cable. JGCD,’ 94
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Cable Length & Tension Change in Deployment / Retrieval vs. Time

deployment 600 m in 600 sec retrieval

A ——— —— —— = l7mv

) D D0t e S S S N B 1600 - -
A
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Fig. 7Ta Cable lengih v= time during deployment.

—
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Fig. 9a Cable length vs time during retrieval.
#5, .

==
o]
F -

tension

ol ¥ A

ﬂ-.r-ﬂ-
=

3
|
|
|

Tension at ULV End (lhs)
m

)

r'

I
/

s6l_ S .

0 200 A0 00 =00 100
Time {sec)

1) B i T | IR} 1000
Time (seck

Fig- Th Cable tension vs time during deployment. Fig. % Cable tension vs time doring retrieval.
Monitoring internal force with O(n) formulation U3/22/05 Chart 12



Simplifying Rotational Generalized Speeds (Mitiguy & Kane)

Revolute Joint 2 DOF Az-El Gimbal 3 DOF Spherical Joint

Generalized Speeds N B
L _NoB ey = o b
u, = "ofep, (=123

Hinge relative rotation angle rates are not the best choices os2205crart 13




Efficient Generalized Speeds (D’ Eleuterio & Hughes) for
Vibration of Elastic Bodies in Large Rotation

N

N

' Note: use of vibration
modes, universally done,

vVi="v"+ 0" x (r+ E(piqi) +30.4. is an act of premature

linearization

Propose Gen. Speeds o, = @O, = Tw” x 20 q, +=¢ q

B

P B
R A XY

Velocity expression free of modal coordinates !
. N _.B
kinematics eqs: E i $9,dm(0;-q;)= "0 XE [##dmg,;
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Consequences of g-independence of Velocity Expression on Mass
Matrix in Kane’ s Equations for a Free-Flying Flexible Body

sV P

Eub +Eu3+lb xr+2¢u6+l = f(q) ,(i=1..6+n)

Partlal Veloc1t1es are now free of generallzed coordinates

Kane’ s Equations, obtained by integrating over body, are:

0
f fc- dm S or D qf ZF _1...6+n)
= Ju, au -aqj 9 Clj
MU =R Mass matrix in LHS is now constant

Facilitates fast computation for single or terminal flexible body.
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Application: System of 4 Hinge-Connected Flexible Bodies, Kane’ s
vs. Recursive Method with Efficient Gen. Speeds--- Loads Analysis

Constraint torque at a joint in a 4-flex-body system with 1-, 2-, 3-
rotation joints: [Int. Cong. Theo. & App. Mech, Warsaw, (4]

Reaction Load

400

Internal

torque for
prescribed

300

200 |-
motion of =

rev. joint

100

torque (N

Identical
result by
2 methods

-100 |-

Revolute Joint Ball Joint

-200 r r r r r r L L L
0 1 2 3 4 5 6 7 8 9 10
time (sec)

Kane’ s Eqns with customary generalized speeds 44.4 sec

Recursive Eqgns with efficient generalized speeds 21.0 sec
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Perils of Premature Linearization for Small Motion :
Use of Vibration Modes, Can L.ead to Loss of Stiffness

P(M) Premature linearization
occurs if partial velocity in
Kane' s eqn is derived from
linear velocity. Recall
Kane’ s Eqns:

Linearized velocity of P in N for small angle Q1

LVPN>=-OMEGA*L*QI1*A1> + ((L+R)*OMEGA+U1*L)*A2>: PV>=: L*A2>
LACC>=(...)*A1>+((L+R)*OMEGA’ +U1" *L-OMEGA"2*L*Q1)*A2>
M*LACC> . PV>=-K*Ql  (Kane’ s Eqn)

Ul'= -[K/(M*L"2) -OMEGA”2]*Ql1 - (1+R/L)*OMEGA' wrong eqn !

Stiffness decreasing with speed, possibly going negative ! 03/22/05 Chart 17



Correct Linearization Without Deriving Full Nonlinear Equations

Small vibration of pendulum with large base rotation

*Linearize partial velocity
from nonlinear velocity
expression.

(Beam paper: Kane,

Ryan & Banerjee, JGCD,
‘87; Plate Paper: Banerjee
& Kane, JAM,’ 89)

Nonlinear expression of velocity of Pin N

NLVPN>= OMEGA*R*A2> + (OMEGA+U1)*L*(-sin(Q1)*A1>+cos(Q1)*A2>)
PVN>= L*(-sin(Q1)*A1>+cos(Q1)*A2>);

Now linearize: LPV>=L*(A2>-Q1*A1>) Premature. linear par. vel PV>=: L*A2>

LVPN> = -OMEGA*L*Q1*A1> + (L+R)*OMEGA+U1*L)*A2>
ACC>=-A1>*(.+L+R)*OMEGA")+(L+R)*OMEGA’ +L*(U1’ -OMEGA"2*Q1)*A2>

Ul'= -[K/(M*L"2) HR/L)*OMEGA)"2]*Q1 - (1+R/L)*OMEGA' correct eqn
*This approach is not feasible for general elastic continua.
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Spin-up Maneuver of Attached Base

Good Test Case for Centrifugal Stiffening of Beams, Plates,
and Arbitrary Flexible Structures: Spin-up Maneuver of
the Attached Base

Q T .2 “
w=—[t——smﬂ], t<T /H

T n T - >

=Q, t>T 1 @

Relevant for Helicopter Rotor Spin-up & Steady Spin
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Redeeming Prematurely Linearized Eqns by Adding Geometric
Stiffness due to Inertia Loads: Makes Up for Loss of Stiffness

Potential for KG of bar*

UKG=0.5*M*OMEGAN2*(R+L)/L*[0,q1 *[1-1-L1T*[05q1] o ° o e

Ul'=[- K/(M*L"2) + OMEGA”2 - (1+R/L)Y*OMEGA"2]*ql - (1+R/L)*OMEGA'
Adding d(UKG)/dql makes the equation correct

-0.2 - . . .
. . Premature linearization
— -0.4 Pendulum angle with spin-up of :
£ attached base of velocity for small
g °° S vibration leads to
8 o8- _ disastrous results for
K] nonlinear N .
> . — linearized - spin-up of base
© e prematurely linearized \
1.2 . o -
] S~
1.6t r r r r r ok
(0] 5 10 15 20 25 30

time (sec)

AE " ou. . ou Fll -l1i[q
UKG = X Y\ dy = — ! Przemieniecki]*
[ G A L)[_l IH%} l
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USING VIBRATION MODES IN LARGE OVERALL MOTION IS AN ACT OF
PREMATURE LINEARIZATION: A GENERAL THEORY OF MOTION-
INDUCED STIFFNESS CORRECTS UNAVOIDABLE ERROR IN EQUATIONS

BANERJEE & DICKENS USES PRECOMPUTED GEOMETRIC STIFFNESS
DUE TO BASE ACCELERATION FOR GENERAL CONTINUR

AP=aQ+UT+O® T Q
q Compute KG

[ﬁ\ 100 x00 y0oo0o z00 [ & \ from FEM for
fp;=-dm| 010 0x0 0y0 02z0 inertia load on
lf3 . 001 00 x 00y 00z ap [ a point mass at

12 (X9Y9Z)

T ° ° °

F=- Z a; @ Krdm Gen. force for motion-induced stiffness

I=1

Add geometric stiffness for 12 sets of motion-induced loads, for general motion of
frame, to overcome loss of stiffness inevitably occuring with use of vibration modes

“Dynamics of an Arbitrary Flexible Body in Large Rotation and Translation”
by Banerjee & Dickens, JGCD, 90, where acceleration terms, al,...,al2 are

identified. See results on next slide:
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BEAM & PLATE SPECIAL THEORIES COMPARED AGAINST GENERAL
THEORY WITH MOTION-INDUCED STIFFNESS : case of BASE SPIN-UP

Cantilever beam, Freq 1= 0,546R/s, Omega = 0.46R/s, T = 1200 5

[ -]

theories:”

[N}
-
Lo
A}

......

Dﬂ
|

Fig.6 Cantilever beam tip deflection during spin-up given by the
present theory (solid line) and the theory of Ref. 1 for steady-state
spin frequency greater than the first vibration mode frequency.

*Beam neutral axis stretches [JGCD,’ 87]
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Cantilever plate, Freq 1=0.75R/s, Omega 1= L.25R/s T=305

35

IINREEEERR

NI

- “/ i . Geo. stiff.
Plate ol | - ' | ‘ | . |theory
fl(;']l:ler _l ] i .1\\! | ‘ | | | & special*

g2 - b d
bytwo | ||| \NEREEE 'p]eam -

. e :Jl | P { | | | | ate

theories [ | || | ‘ | ‘theories

: / ‘ J et ‘ i agree

g 5 \ | l L

d j U] ‘

: s | L

00 S0 104 50 M D M LI 2 KD DO WD 6L
TIHE [5EC)

Fig.7 Cantilever plate corner deflection during spin-up given by the
present (heory (solid line) and the theory of Ref. 3 for steady-state
spin frequency greater than the first vibration mode frequency.

*Plate midsurface does not stretch[JAM, 89]
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Flexible Spinning Paraboloidal Antenna of Dual-Spin Spacecraft

Paraboloidal antenna, Freq 1=0.433 Hz, Omega=0.5 Hz, T=130 5

=
w i
P ]

.
5n5 | .l I | ‘ ;| |
T T 7 -

Shell fi | | N .

node ?I | “

defln in 37—

spin-up EFt | ;

by two £ | | _

theoriesz:+— ', | '

]! |
1410 00 88 xo zs;_lamml.;mn.u WO A0 W3 wo o

| Fig.2 Elastic displacement along y axis at a finite-element node of
boloidal antenna. paraboloidal antenna for spin-up given by present theory (solid line)

and a conventional theory (dashed line); steady-state spin frequency is
greater than the first mode vibration frequency,

Spin-up of paraboloid shell model: KG-theory works,modal theory
fails [Banerjee & Dickens, JGCD,’ 90, pp. 221-227]

Fig.1 Dual-spin spacecraft with flexible, spinning offset para-

03/22/05 Chart 23



Model Reduction for Articulated Flexible Bodies : 3 Beam Example

Three hinge-connected elastic beams with
actuator and sensor at joints

AT - - r

q qs |
0, 0,
M LI K gl |jy)
0, 0,
NG | 1193

We want a select a set of component modes that
participate significantly in the system modes
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Flexible Body Model Reduction by Singular Value Decomposition
of Projected SYSTEM Modes: Three Beam Example

Elastic deformation given by component modes times modal coord
O =¢1 91,02 =¢q5,03 =P3q3
Component modal coordinates related to system modal coordinates

q, = An
(q,] | A q, = Bn
61 d; = Cn
34> L = b {77}/’ Do SVD of
0, A,B,C and
)L ¢ _ keep as many
A ,B, and C are projections of system eigenvectors columns of U
on component modal coordinate subspace as the ranks
[U,,Z,,V,]=svd(A); [U,,Z,,V,]=svd(B);etc. (SV) of A,.B,C
0, =9 01771 = ¢?1 m; 0,=¢, 02772 = ¢?2772; etc. to modify
comp modes
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Results of 29 dof model designed to match first 15 freqs of 68
dof articulated flexible body system for 3 beam model [Lemak]

29 dof Model Designed to Match First 15 of 68 dof System Frequencies

20 | | T | | ~
o ’ 51 = ¢1 U1771
18 © i ~
’ 52 = ¢2 U,n,
r 5 rociuced modl frequency . 1 6, =9, Usn,
141 _

" | Out of 15 system
chal . ° ..~ | modes, SVD kept
20l | 15 modes in
3 K matrix A of body
S 11, 5 modes in B of

oL 5 ® 9 | body 2, and 9
_© modes in C of
- & |
’ i ) body 3, to get a
2 ®® | (15+5+9)dof model
® ® ®

0 & R ® | | | |

0 5 10 15 20 25 30

mode number
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Bode Plot for Reduced & Full Order Model in An Actual Application [Lemak]

High Frequency Torque to Aangle Displacement Bode

Response

LA OO NS E ESD 0 Al T

v e SON PalTing & OOarFos

TN LR S TN S B Y oy o | S S e T S— - i gl ——

" Reduced Iviodel Ettercgots to
capture rmodes wath hizh

rmodal gain

I PR P T e

575 H=

Lockkeed Marts Proprietans hronmm IBos

O =J0nSCrhaw i =1

Body SC | Scan. | Scan. | Scan. Scan. Starer | Starer | Starer | Starer
Bus | Pivot | Mirror | Az El Pivot | Mirror | Az El
Tube Wheel | Wheel | Tube Wheel | Wheel
Full *894 | 30 9 3 3 30 9 3 3
System
Modes
Reduced | *31 | 4 2 3 3 4 2 3 3
Model
Modes 3/22/05 Chart 27




Deriving Damping of Components from System Level Damping

Assume System Damping Factor C

C=0"[2¢c0l0™

(I)—l _ ((I)tq))—l b pseudo-inverse

least square err

Derive component damping matrix,
with S; matrix selecting component j

c,=S.CS;
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Result of System Damping Re-synthesis with Derived

Component Damping in an Application [Lemak]

Damping Coefficient

Zeta Difference

0.5

0.8.

0.6

0.4

0.2

<]10Hz
Assigned Damping :
Obtained Damping |
| -
1
| :
nhes \;\’xxxxx*x r L
Mode Index |
Zeta Error |
N C - : i L
1 . |
|
| |
I XK XX
|
N7 N N m&zazg] PSR I
Mode Index
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Recursive Formulation for Constrained Mechanical Systems

S
‘\i___/_7,::=._\£____-xx Closed loop
P . ‘f/"; \\\ _ . °
SN system 1S cut
e to form
B open loop
A N o tree system:
= then add
(7 e A
e T e e Ao 1
P e constraints.

-

1. Cut Loops and Make Forward Pass for Kinematics of Tree System so Formed

2. Do Backward Pass Tracking Part of Contributions from Constraint Forces

3. Complete Second Forward Pass with Constraint Forces in Dynamical Eqns
4. Add Constraint Conditions & Solve Dynamical & Constraint Eqns

Efficient Generalized Speeds., Recursive Formulation, and Multi-Point
Constraints in Flexible Multibodv Dynamics-Banerjee & Lemak, JGCD, ‘07
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Constrained Dynamical Equations: Adding Extra DOFs and
Constraint Eqns --- Two Formulations

Order-n® Extended Kane Eqns New Order-n Eqgns:

Both methods expose constraint force by cut & use constraint eqns

r 3 r* ) r 3

1 ul gl -hl-
g, o+ |1 {A}
f Uy g3 h,

" J " J L -

3

5
t

d
bt
C

S

. Q-
[\
I

u
u
u

6 3

o 3 B B

0| A d au, +bu, +cu, =d
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CPU Results for 8 Bodies, 3 LOOPS, Varying # Modes [Lemak]

*Note: Absolute CPU time will go down with use of faster computers

Number of Number of CPU sec for | Ratio of Ext.

Modes per Generalized 10 sec Kane over

Body Speeds Extended Efficient
Kane _ Order-n
Formulation Formulation

0 24 6.28 0.969

4 56 57.57 1.516

8 88 909.29 3.053

12 120 2484.3 4.455




Stroboscopic Plot of a Whirling Chain of Five Articulated
Elastic Trusses, 75 dof with 3 constraints [Lemak]

JGCD paper [Banerjee & Lemak,’ 07]
on constrained flex body “O(n)” eqns

*Chain of 5-flexible bodies
! connected by Hooke’ s joint
/ * First body with 3 rotations
/ * Three translational constraints at
other end of chain, freed with force

% » Constraint imposed with eventual
excellent constraint satisfaction
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Kane’ s Equations for Variable Mass Flexible Body Dynamics
[ Banerjee, Int. Cong. Th. & App. Mech, ' 08, Adelaide ]

VNN T i =

N _ k . N __P
2 Vi.(_mk Ve)+fS \f .dfext
kEL

Thrust term

or oD .
-——=—1i=1..,6+n
dq; 09,
RHS has Thrust, External Forces, & Forces from Potential 7 due

to Structural Stiffness & Geometric Stiffness due to Thrust , &
Dissipation Functions D.
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Form of (6+n) DOF Flexible Rocket Dynamics Eqns

f

MoV+a@l®+I1Y o)

n
(] ~y ~Y t
1919 1Nt 1M 6r+a1% 0+ Y1 0,0} =
J

"GV +W

\

Tt

Dynamical Eqns Involve Variable Mass Modal Integrals, ;¢

my

States are frame origin velocity, angular velocity, efficient modal

generalized speeds;

Effects of thrust show up in generalized force and load-dependent
geometric stiffness of structure, which affects frequencies.
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Computing Variable Mass Modal Integrals in Rocket Dynamics

Approximation:

Modes Not Changing Spatially

with Time: simplifies time-

varying modal integrals via

interpolation

m(t) =m; g(t)

m, m.t |t
glt)={—-——+| =
my g\l

2 .

m(t)
19 = [FY (1. 8,)dm
0

=g(l‘)fF(k)(7'O 9¢j)dmf

!

y

A

iy 1

J4—L g0 |

My

m

Mass at time t modeled by Hermite polynomial in terms of

initial mass, mass loss rate, and final mass
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Commanded Gimbal Angle, Altitude, Horiz. Disp, Pitch Angle ICTAM

‘08)

PRESCRIBED GIMBAL ANGLE vs. T

Command
gimbal N\
€0 :
angle ;« N
0
02 i H H
(V] 10 20 30 40 50 60

T (S)

Fig. 2 Prescribed motion time history of the nozzle gimbal angle.

HORIZONTAL DISPLACEMENT vs. T for rockets

10000
RIGID —
0 LOW.FLEX =
Rocket E " =
OriZ & o
displ B o \\
a
more for 2 < | AN
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Fig. 4 Horizontal displacement of the rocket vs time, given by three
rocket models.
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Fig. 3 Height of the rocket from the ground vs time, given by three
rocket models.
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Fig. 5 Pitch angle of the rocket vs time, given by three rocket models.



Tip Defl.,First Mode Freqs,Torque for Prescribed Motion (ICTAM °08)
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Fig. 6 Tip and midpoint deflection of the high-flexibility rocket mod

First Mode Frequency vs. T for LOW FLEX model
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CONCLUSION: High-Fidelity, Time-Efficient Modeling
of Large Overall Motion of Flexible Multibody Systems

1. Computational efficiency increases with i) Block-diagonal
recursive Kane formulation, ii) Choosing generalized speeds to
simplify dynamical eqns, iii) Representative modal reduction.

2. Geometric stiffness for 12 inertia loads corrects unavoidable
error of premature linearization in using vibration modes.

3. Large deflection treated by O(n) formulation with spring-
connected rigid multibody models, producing as high-fidelity
results as nonlinear FEM, & being more time-efficient.

4. Variable-n O(n) method models deployment / retrieval
of beams and cables with fidelity and efficiency.

S. For systems with closed structural loops the recursive method,
employed by cutting loops & solving constraint forces, is efficient.

6. Kane’ s eqns for variable mass flexible bodies, modal integrals via
Hermite interpolation, with freqs modified by thrust, are given.
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